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1. Introduction 

I key observation I 

0 In their semi-phenomenological fit, Gliick, Reya and Vogt pre- 
pared the initial PDF at pretty low energy scale of 
(600hIeV)' in c'ontrast to the common sense of perturbative 
QCD, atnd concluded that 

0 Even the is as of the sea-quark distribu- 
tions arre established by the NMC measurement 

0 The origin of this sea-quark asymmetry is definitely non- 
perturbative, and it cannot be radiatively generated 
through the perturbative QCD evolution processes 



best candidate of study 

0 ira (CQShd) is the simplest 
and most powlerful effective model of QCD which fulfills the 
above requiremeat 

0 Most important would be its field theoretical nature? i.e., 
proper account of ? which 
enables 

-u. 

0 without introducing any adjustable parameter, it re- 
produces qualitatively noticeable features of the re- 
cent DIS observations including NMC and EMC experi- 
ments 

What was lacking for the flavor SU(2) CQSM is the neglect of 

Here, we attack this ]problem by using 

which is constructed on the basis of SU(2) CQSM with some 



2. Flavor SU(3) CQSM 

1 model lagrangiaiq 

with 

lbasic dynamical 

(I) lowest energy classical solution is obtained by 

e in i 



(2) quantization of symmetry restoring rotational 

motion in c 

U ” ’ ! j ( ~ , t )  = A(t) U ~ ( X )  At(t) 

with 

( 3 )  perturbative treatment of SU(3) breaking term 

we have taken ajccount of 3 types of O(Ams) corrections 

0 “dynarnical Am, correction” 

0 “kinematical Am, correction” 

0 (‘ representation mixing Am, correction” 

“A chiral theory of light-flavor sea-quark 
distributions in the nucleon”, 



3. Comparison with High Energy Data 

of the SU(3) CQSM, is fixed to be 

0 use predictions of CQSM as initial-scale distributions 

0 scale dependence of PDF 

I Fortrlan code of DGLAP eqs. at NLO I 

provided by Saga group 



theoretical distributions at model energy scale 

(A) unpolarized strange distribution 
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0 s - 3 asymmetry of the unpolarized distribution functions 
certainly exists 

0 difference S(Z) -- s(z) has oscilatory tx: dependence with 
s , due to the restrictions : 

s(z)-s(tx:) is v 



(B) longitudinally polarized strange distributions 
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In chiral limit, s and 3 are both n. iv 

after introducing SU(3) symmetry breaking effects 

As (2) still remains 
As(s) becomes 

s - S asymmetry of the distri- 
bution is 



1 comparison with existing high-energy data I 

CCFR analysis of neutrino-induced charm productions 

with the constraint i+~> = s(z) 

A.O. Bazarko et id., CCFR Collab., 2. Phys. C65 (1995) 189 
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0 After inclusion of the 7 the 
theory reproduces qualitative tendency of the CCFR fit 



global analysis including all the neutrino data 

0 V. Barrone et al., Eur. Pliys. J. C12 (2000) 243 

difference of s(z) and dz) at O2 = 20GeV2 
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ratio of s(z) and S ( z )  at Q2 = 20 GeV2 

s(x) / S(x) at QL = 20 GeVL 
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LSS fits of polarized DIS data at Q2 = 1 GeV2 

E. Leader, A.V. Sidorov, D.B. Stamenov, P.L. B488 (2000) 283 
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separate contribution of As(z) and As(%) 

to polarized strange sea 
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0 polarization of strange sea almost solely comes from 
7 and the contribution of $-quark - is very small s- 



comparison with EMC and SIWC data 
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problem of isospin ~~~~~~~~~~~ “J of sea quark distributions 

u(x) - d ( X )  < 0 

AG(x)  - L l d ( ~ )  > 0 I predicts 
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difference of J(z) and U ( x )  : E866 
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$x> / U(x> at Q2 = 30 GeV2 
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5. Conclusion 

4 An in feature of the CQSM as compared with 
many other effective models like the MIT bag model is that 
it can give reasoinable predictions also for the 

& This feature is essential also for giving any reliable predictions for 
en t 1-i s in the nucleon, which totally 

) has some oscilatory tx: dependence due to 

* positivity constraint for s(x) and S ( x )  

* strangeness quantum number conservation 

0 after inclusion of the SU(3) symmetry breakings, 

tively consistent with global analysis of Barone et al. 

- n e of 8 -s and are qualita- 



0 s-s asymmetry of longitudinally polarized sea is inore 
pr-ofound than that of unpolarized sea 

As(x) : 
As(x) : 

0 model also predicts in 

u(x) - d(x) e: 0 1 in 
Ati(x) - Ad(x) > 0 (Au(z) > 0 > Ad(x)) 

I Important lessonj 

of 

What is absolutely required in future experiments is 

of PDF 


